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The reaction of the thermally unstable U(X-C~H~)~ with an excess of 2,2’- 

bipyridine leads to incorporation of three 2,2’-bipyridine ligands in the ther- 
mally more stable product in which transfer of two of the four ally1 groups to 
one or two of the 2,2’-bipyridine ligands has occurred. The product has been 
characterized analytically, spectroscopically, magnetically, and by detailed 
studies of hydrolysis products. 

Transition metal ally1 systems have long been recognized as useful compounds 
for both synthetic and catalytic applications [ 11. As a result, a great deal of 
effort has been devoted to gaining a better understanding of the bonding within 
these systems. Structural studies have proven indispensable in these efforts [ 2]_ 
More recently it has become evident that actinide allyls may possess quite unique 
catalytic properties, as has been observed for the U(C3H,)3X (X = Cl, Br, I) com- 
pounds which bring about stereospecific c&1,4 polymerization of butadiene, 
yielding a product with superior physical properties [3]. In contrast to the tran- 
sition metal systems, however, accurate structural data for actinide and even 
lanthanide ally1 systems has been entirely lacking, no doubt due in part to the 
thermal instability of many of these compounds, such as the formally eight 
coordinate U(C,H,), (dec. -2O’C) [4] _ 

In order to allow more convenient study of actinide allyls we have been inves- 
tigating means of bringing about their stabilization. As uranium(IV) organo- 
metallics tend to be most stable when a formal coordination number of ten is 
adopted [ 51, it appeared that it might be possible to stabilize a tetra(x-allyl)- 
uranium complex by incorporation of a bidentate ligand such as 2,2’-bipyridine 
(bpy), into a formally ten-coordinate (bpy)U(7r-CJH5), compound_ Herein we 
describe our observations on the interaction of U(C3H5)4 with 2,2’-bipyridine 
and some related Lewis bases. 
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Experimental 

The preparations and handling of all organometallics were necessarily carried 
out under an atmosphere of prepurified nitrogen, with rigorous exclusion of air 
and moisture. Sample manipulations were by Schlenk methods or in a glove box. 
All solvents were thoroughly dried and deoxygenated by refluxing under nitro- 
gen in the presence of Na/K alloy and benzophenone, and distilled immediately 
prior to use. Deuterated benzene was dried over Na/K alloy and then freeze-thaw 
degassed. UCh and C,H,MgX (X = Cl, Br) reagents were prepared by standard 
procedures [ 6,7] _ The purities of the Grignard reagents were ascertained by gas 
evolution on hydrolysis. Elemental analyses were performed by Galbraith 
Analytical Laboratories. 

Physical measurements 
Infrared spectra were recorded with Beckman IR-20 and ACCULAB 3 spec- 

trophotometers. Mulls were prepared in a glove box with dry, degassed Nujol 
and the spectra were calibrated with polystyrene. Room temperature magnetic 
susceptibilities were determined in benzene or toluene by the Evans method 
[S] . Nuclear magnetic resonance spectra were recorded on Varian EM-360, 
XL-loo, and SC-300 instruments. A 3 foot X l/8 inch 10% silicone DC QFl 
(approximate boiling point) column (Altech Associates) on SO-100 mesh 
Chromasorb Q (Allied Science Labs, Inc.) and a 5 foot X l/4 inch Porapak Q 
(Analabs, Inc.) column were primarily used for gas chromatography. Possible 
hydrogen contents were ascertained using a 5 foot X l/8 inch column of 3 A 
molecular sieves cooled by liquid nitrogen. Gases evolved on hydrolysis were 
collected by displacement and their compositions determined by gas chromato- 
graphy (Porapak Q column) and infrared spectroscopy. Liquid phase organic 
constituents were analyzed by gas chromatography (Porapak Q column) for 
possible volatile components. Less volatile components were isolated (after 
vacuum removal of solvent) by pentane extraction, and subsequently analyzed 
by infrared spectroscopy and GC/mass spectroscopy (QFl column). 

The reaction of U(C3H5)4 with 2,2’-bipyridine. Isolation of “(bpy),U(C&5),” 

Tetra(dlyl)uranium was prepared (in ca. 93% yield) essentially as described 
in the literature [4]. To a slurry of 4.0 g (10.5 mmol) of UCla in 100 ml of 
ether at -40°C was added an excess (50 mmol) of C,H,MgCl (as a solid) or 
&H,MgBr (in a minimum volume of ether). Both during and after the addition 
the mixture was maintained between -40 and -20°C. The mixture was then 
allowed to stir at least 8 h in a cold room (ca. -18” C) by which time the reac- 
tion was usually complete 191. The ether was then removed in vacua at -25” C 
and the compound was extracted from the mixture by scraping and stirring the 
mixture with 150 ml of cold (-18°C) pentane. The solution was then cooled 
to -40°C with stirring for 2 h and filtered through a pre-cooled medium frit 
into a 500 ml flask equipped with a magnetic stirring bar and kept at -78°C 
under nitrogen. 4.91 g (31.5 mmol) of 2,2’-bipyridine were then added as a 
saturated solution in pentane, eventually producing an orange-brown to brown 
colored precipitate. On completion of the addition, stirring was continued an 
hour at -20” C, after which time the mixture was allowed to slowly warm to 
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room temperature [lo] _ At this point there is generally a large quantity of pre- 
cipitate. If necessary, however, the solution volume may be reduced to 125- 
150 ml in vacua_ The resulting precipitate was then collected by filtration and 
washed with three 20 ml portions of cold pentane. The product may then be 
dissolved in benzene, filtered, and isolated in ca. 60% yield (from II(C by 
removal of benzene in vacua. The product so obtained smolders or bums on 
exposure to air. While its appearance, air sensitivity, and solubility properties 
do not seem to change over a period of a week, the hydrolytic properties do 
change and the compound is best prepared fresh or stored cold (after months 
at -78°C no change in hydrolytic properties seems to take place)_ 

Anal. Found: C, 57.93; H, 5.06; N, 10.37. C42H,,N,U calcd.: C, 57.92; H, 
5.09; N, 9.65%. 

Complete infrared data (Nujol mull): 3076sh, 3042sh, 1644m, 1604s, 1568s, 
1525w, 1445sh, 1328m, 1293s, 1250m, 1230w,sh, 1172s, 1138s, 1124sh, 
IllOsh, 1098sh, 107Ow, 1056w, lOlOvs, 985vs, 924vs, 808sh, 790sh, 787sh, 
768sh, 737sh, 720sh, 682m, 652m, 634w, 605m (s = strong, m = medium, w = 
weak, sh = shoulder, v = very)_ 

Hydrolytic data 
The following summarizes the propene evolution occurring on five separate 

room temperature hydrolyses. The vapor pressure of water (21 Torr) was taken 
into account. 

1. Compound(g) 0.162 0.320 0.80 0.521 0.486 

2.Compound(mmol) 0.186 0.368 0.92 0.598 0.558 

3. Pressure <Tom) 646 640 647 640 640 

4. Gas(ml) (+0.5ml) 11 25 48 34 33 

5.Propene<mmol) 0.373 0.836 1.62 1.14 1.10 

6.512 2.00 2.27 1.77 1.90 1.98 

Results and discussion 

The reaction of excess 2,2’-bipyridine with tetra(alIyl)uranium leads to the 
formation of an adduct with greatly enhanced thermal stability. Elementa! 
analysis of the microcrystalline product is nicely consistent with the formula- 
tion “(bpy)3U(C3H5)4”. Room temperature magnetic moments of 2.48 BM 
(benzene) and 2.55 BM (toluene) were derived from careful susceptibility mea- 
surements by the Evans method [S]. These values are comparable to those 
reported for a number of f2 uranium(IV) compounds such as 2.59 BM for 
(C5HS)UC13(dme) [ll] (dme = 1,2_dimethoxyethane) or 2.6 BM for U(C3H& 
[4]. Vibrational bands due to the 2,2’-bipyridine ligands tend to obscure bands 
due to the ally1 groups. Even so, a close examination of the infrared spectrum 
clearly reveals the presence of localized C=C bonds as indicated by the band 
at 1644 cm- l_ Proton NMR spectra of the product, however, were composed 
of a number of brpad, unassignable resonances, and variable temperature studies 
were unable to bring about any noticeable improvement. The spectra did clearly 
indicate an absence of free 2,2’-bipyridine, indicating that all three bipyridine 
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ligands are tightly bound. The above data initially suggested the formulation of 
the product as the formally ten coordinate uranium(IV) species (bpy),U(a- 
C,H,),_ The complexity of the NMR spectra seemed rather peculiar, however, 
and therefore other means were sought to help verify the actual product compo- 
sition. Hydrolysis of the product did yield propene as the only volatile compo- 
nent; however, only 1.8-2.3 moles propene were consistently evolved per moIe 
of complex. An exhaustive search for the other two ally1 groups was therefore 
carried out, starting with the mixture resulting from the initial reaction of 
U(CsH& with 2,2’-bipyridine. Both the liquid and vapor phases were carefully 
chromatographed, with the result that the absence of propene, allene, propyne, 
cyclopropane, propane, hydrogen, biallyl, or polymeric aliphatic substances 
could be assured. It was therefore concluded (in accord with the analytical data) 
that all four ally1 groups were still associated with the compound. Similar test- 
ing of the liquid and vapor phases after hydrolysis also revealed the absence of 
propane, hydrogen, or biallyl. However, removal of the volatile solution compo- 
nents in vacua led to isolation of an oily organic material which was examined 
by infrared spectroscopy and GC/mass spectroscopy. Five major components 
were observed: 2,2’-bipyridine, two apparent isomers of allylbipyridine, and (at 
least) two apparent isomers of diallylbipyridine. The total quantity isolated 
corresponded to ca_ 40% of the total bipyridine ligand content, clearly a signif- 
icant amount but suggesting that not all of the ligands are freed on hydrolysis 
[12,13]. It therefore became clear that on incorporation of the bipyridine 
ligands in the complex, two of the ally1 groups are rapidly transferred to the 
ligands from the uranium atom, sometimes going onto the same ligand, and at 
other times going onto two separate ligands [12]. 

Pertinent to the above observations are the very interesting and extensive 
results of Gillard et al., and others, dealing with the attack of a variety of nucleo- 
philes on coordinated ligands such as pyridine, 2,2’-bipyridyl and l,lO-phenan- 
throline (e.g., eq. l)_ [14,15]. 

+ Nu- -, (1) 

‘c 
M"+ 

\M(“-‘)+ 

(Nu = CN. OH, c,tig, etc. ) 
As a key to the enhancement of nucleophilic attack on these ligands is the 

metal complexation (analogous to quatemization), the ally1 transfer process in 
the present case would definitely appear to take place intramolecularly after 
initial coordination of some of the bipyridyl ligands (eq. 2). 

(r) (If) (III) 

The generation of aIlylated bipyridyl ligancls from II would necessitate the 
transfer of two hydrogen atoms per uranium atom. The fate of these hydrogen 
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atoms is uncertain at present although observations made in other metal sys- 

terns most likely may apply here as well [ 161. The observed existence of iso- 
mers would most likely arise from positional isomerization of the ally1 groups. 
In this regard a useful analogy may be drawn with the Claisen ortho (pm-a) ally1 
aryl ether rearrangement (eq. 3) ]17], suggesting that the initial products 

0- 0 0 

4 
H 

0 
C CB- I, - - I I QT H \ 

(3) 

OH 

probably contain B-substituted ligands for which later shifts may occur to yield 
4substituted isomers [l&19]. Should this be the case, the most likely mono- 
substituted isomers would be the 4-ally1 and 6-ally1 compounds, while likely 
disubstituted products would include 4,4’-diallyl, 4,6’-diallyl, and 6,6’-diallyl 
compounds 120). While these possibilities are under continuing study, it was 
observed that even though the net yield of, for example, the combined mono- 
allylbipyridine isomers was relatively constant, the relative proportions of the 
individual monosubstituted isomers varied considerably, from ca. 3/l (appar- 
ently ortho/para to nitrogen) for the hydrolysis of relatively fresh complex 
samples to ca. l/3 for aged or heated sample [21]. 

The above results have provided a fairly detailed, though not yet complete, 
picture of the interaction of 2,2’-bipyridine with tetra(allyl)uranium, Similar 
reactions appear to take place as well with the l,lO-phenanthroline ligand 1221. 
Since the actual product composition seems to consist of essentially modified 
(i.e. allylated and possibly partially hydrogenated) (bpy),U(C,H,), species, the 
metal-bound rr-ally1 groups might be expected to exist in a 7r-configuration in 
order to achieve a formal coordination number of 10 for uranium [ 231. This 
formulation is consistent with all the data gathered and also explains the com- 
plexity of the ‘H NMR spectra as well as the failure to obtain single crystals of 
the product. The uranium-mediated transfer of an ally1 ligand is certainly novel 
at this time, although it would appear to be a potentially common process in 
many other organoactinide complexes as well. This and other aspects of the 
above reactions are under continuing study. The initial goal of structurally char- 
acterizing a stable a-ally1 complex of uranium has since been achieved for the 
compound (C5(CH3)5)U(2-CH3C3H4)3 [24]. 
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